Position switch, Rounded plunger, Basic device, expandable, 1 NC, Cage Clamp, Yellow, Insulated material, $-25-+70^{\circ} \mathrm{C}$, EN 50

Powering Business Worldwide"
Part no.
LS-11S
Catalog No. 266105

Alternate Catalog LS-11S
No.
EL-Nummer 4356032
(Norway)

Delivery program
Basic function

Part group reference
Product range
Degree of Protection
Features
Ambient temperature
Design
Snap-action contact
Contacts
N/O = Normally open
N/C = Normally closed

Notes

Contact sequence

Contact travel. $=$ Contact closed $=$ Contact open

Positive opening (ZW)
Colour
Enclosure covers
Enclosure covers

Housing
Connection type
Notes

Position switches Safety position switches

LS(M)-...
Rounded plunger
IP66, IP67
Basic device, expandable
-25-+70
EN 50047 Form B
Yes

1 N/O
$1 \mathrm{NC} \Theta$
Θ = safety function, by positive opening to IEC/EN 60947-5-1

yes

Yellow

Insulated material
Cage Clamp
Cage-Clamp is a registered trademark of Wago Kontakttechnik, 32432 Minden, Germany.
Accessories for the Cage-Clamp terminals from Wago:power comb, gray, Wago Article No. 264-402

Technical data

General

Standards		IEC/EN 60947
Climatic proofing		Damp heat, constant, to IEC 60068-2-78; damp heat, cyclical, to IEC 60068-2-30
Ambient temperature		${ }^{\circ} \mathrm{C}$
Mounting position	$-25-+70$	
Degree of Protection		As required

Terminal capacities		mm^{2}	
Solid		mm^{2}	$1 \times(0.5-2.5)$
Flexible with ferrule		mm^{2}	$1 \times(0.5-1.5)$
Repetition accuracy		mm	0.15
Contacts/switching capacity			
Rated impulse withstand voltage	$U_{i m p}$	V AC	4000
Rated insulation voltage	u_{i}	V	400
Overvoltage category/pollution degree			111/3
Rated operational current	I_{e}	A	-
AC-15			$/$
24 V	I_{e}	A	6
220 V 230 V 240 V	I_{e}	A	6
380 V 400 V 415 V	I_{e}	A	4
DC-13			
24 V	I_{e}	A	3
110 V	I_{e}	A	0.6
220 V	I_{e}	A	0.3
Control circuit reliability			
at $24 \mathrm{VDC} / 5 \mathrm{~mA}$	$\mathrm{HF}^{\text {c }}$	Fault proba	$<10^{-7},<1$ fault in 1 ©perations ty
at $5 \mathrm{VDC} / 1 \mathrm{~mA}$	$\mathrm{HF}^{\text {c }}$	Fault proba	$<5 \times 1 \chi^{6},<1$ failure at 5×9 operations ty
Supply frequency		Hz	max. 400
Short-circuit rating to IEC/EN 60947-5-1			
max. fuse		A gG/	6
Rated conditional short-circuit current		kA	
Mechanical variables			
Lifespan, mechanical	Oper	$\times 10^{6}$	8
Contact temperature of roller head		${ }^{\circ} \mathrm{C}$	$\leqq 100$
Mechanical shock resistance (half-sinusoidal shock, 20 ms)			
Standard-action contact		g	25
Operating frequency	Oper		$\leqq 6000$
Actuation			
Mechanical			
Actuating force at beginning/end of stroke		N	1.0/8.0
Actuating torque of rotary drives		Nm	0.2
Max. operating speed with DIN cam		m / s	1/0.5
Notes			for angle of actuation $\alpha=0^{\circ} / 30^{\circ}$

Design verification as per IEC/EN 61439

Technical data for design verification			
Rated operational current for specified heat dissipation	I_{n}	A	6
Heat dissipation per pole, current-dependent	Pvid	W	0.17
Equipment heat dissipation, current-dependent	$P_{\text {vid }}$	W	0
Static heat dissipation, non-current-dependent	$P_{\text {vs }}$	W	0
Heat dissipation capacity	$\mathrm{P}_{\text {diss }}$	W	0
Operating ambient temperature min.		${ }^{\circ} \mathrm{C}$	-25
Operating ambient temperature max.		${ }^{\circ} \mathrm{C}$	70
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures			Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal h			Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnorma and fire due to internal electric effects			Meets the product standard's requirements.

10.2.4 Resistance to ultra-violet (UV) radiation
10.2.5 Lifting
10.2.6 Mechanical impact
10.2.7 Inscriptions
10.3 Degree of protection of ASSEMBLIES
10.4 Clearances and creepage distances
10.5 Protection against electric shock
10.6 Incorporation of switching devices and components
10.7 Internal electrical circuits and connections
10.8 Connections for external conductors
10.9 Insulation properties
10.9.2 Power-frequency electric strength
10.9.3 Impulse withstand voltage
10.9.4 Testing of enclosures made of insulating material
10.10 Temperature rise
10.11 Short-circuit rating
10.12 Electromagnetic compatibility
10.13 Mechanical function

Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
Is the panel builder's responsibility.

Is the panel builder's responsibility.
Is the panel builder's responsibility.
Is the panel builder's responsibility.
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
Is the panel builder's responsibility. The specifications for the switchgear must be observed.
Is the panel builder's responsibility. The specifications for the switchgear must be observed.

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 8.0

Sensors (EG000026) / End switch (EC000030)
 (ecl@ss10.0.1-27-27-26-01 [AKE640013])
Width sensor

Diameter sensor
Height of sensor
Length of sensor
Rated operation current le at AC-15, 24 V
Rated operation current le at AC-15, 125 V
Rated operation current le at AC-15, 230 V
Rated operation current le at DC-13, 24 V
Rated operation current le at DC-13, 125 V
Rated operation current le at DC-13, 230 V
Switching function
Switching function latching
Output electronic
Forced opening
Number of safety auxiliary contacts
Number of contacts as normally closed contact
Number of contacts as normally open contact
Number of contacts as change-over contact
Type of interface
$\mathrm{mm} \quad 31$

Type of interface for safety communication
Construction type housing
Material housing
Coating housing
Type of control element
Alignment of the control element
mm 0
$\mathrm{mm} \quad 61$
A 6
A 6
A 3
A 0.8
A $\quad 0.3$

Quick-break switch

Type of electric connection
With status indication
Cable entry metrical
No
Yes
None
None

Approvals

Product Standards
UL File No.
UL Category Control No.
CSA File No
CSA Class No
North America Certification
Degree of Protection

IEC/EN 60947-5; UL 508; CSA-C22.2 No. 14; CE marking E29184

NKCR
12528
3211-03
UL listed, CSA certified
IEC: IP66, 67, UL/CSA Type 3R, 4X (indoor use only), 12, 13

Dimensions

(1) Tightening torque of cover screws: $0.8 \mathrm{Nm} \pm 0.2 \mathrm{Nm}$
(2) only with LS (insulated version)
(3) Fixing screws $2 \times \mathrm{M} 4 \geqq 30$
$M_{A}=1.5 \mathrm{Nm}$

